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Abstract. In this paper, we examine a number of additive and multiplicative multilevel iterative methods and preconditioners in the

setting of two-dimensional local mesh refinement. While standard multilevel methods are effective for uniform refinement-based discretizations

of elliptic equations, they tend to be less effective for algebraic systems which arise from discretizations on locally refined meshes, losing their

optimal behavior in both storage and computational complexity. Our primary focus here is on BPX-style additive and multiplicative multilevel

preconditioners, and on various stabilizations of the additive and multiplicative hierarchical basis method (HB), and their use in the local

mesh refinement setting. In the first two papers of this trilogy, it was shown that both BPX and wavelet stabilizations of HB have uniformly

bounded condition numbers on several classes of locally refined 2D and 3D meshes based on fairly standard (and easily implementable) red and

red-green mesh refinement algorithms. In this third article of the trilogy, we describe in detail the implementation of these types of algorithms,

including detailed discussions of the datastructures and traversal algorithms we employ for obtaining optimal storage and computational

complexity in our implementations. We show how each of the algorithms can be implemented using standard datatypes available in languages

such as C and FORTRAN, so that the resulting algorithms have optimal (linear) storage requirements, thereby the resulting multilevel method

or preconditioner can be applied with optimal (linear) computational costs. We have successfully used these datastructure ideas for both

MATLAB and C implementations using the FEtk, an open source finite element software package. We finish the paper with a sequence

of numerical experiments illustrating the effectiveness of a number of BPX and stabilized HB variants for several examples requiring local

refinement.
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1. Introduction. While there are a number of effective (often optimal) multilevel methods for uniform refinement-
based discretizations of elliptic equations, only a handful of these methods are effective for algebraic systems which arise
from discretizations on locally refined meshes, and these remaining methods are typically suboptimal in both storage
and computational complexity. In this paper, we examine a number of additive and multiplicative multilevel iterative
methods and preconditioners, specifically for two-dimensional local mesh refinement scenarios. Our primary focus is on
Bramble, Pasciak, and Xu (BPX)-style additive and multiplicative multilevel preconditioners, and on stabilizations of
the additive and multiplicative hierarchical basis method (HB). In [1, 2, 3], it was shown that both BPX and wavelet
stabilizations of HB have uniformly bounded condition numbers on several classes of locally refined 2D and 3D meshes
based on fairly standard (and easily implementable) red and red-green mesh refinement algorithms. In this article, we
describe in detail the implementation of these types of algorithms, including detailed discussions of the datastructures
and traversal algorithms we employ for obtaining optimal storage and computational complexity in our implementations.
We show how each of the algorithms can be implemented using standard datatypes available in languages such as C
and FORTRAN, so that the resulting algorithms have optimal (linear) storage requirements, and so that the resulting
multilevel method or preconditioner can be applied with optimal (linear) computational costs. We have successfully
utilized these datastructure ideas for both MATLAB and C implementations using the FEtk, an open source finite
element software package. We also present a sequence of numerical experiments illustrating the effectiveness of a number
of BPX and stabilized HB variants for examples requiring local refinement.

The problem class of interest for our purposes here is linear second order partial differential equations (PDE) of the
form:

−∇ · (p ∇u) + q u = f, u ∈ H1
0 (Ω).(1.1)
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Here, f ∈ L2(Ω), p, q ∈ L∞(Ω) and p : Ω → L(Rd, Rd), q : Ω → R, where p is a symmetric positive definite matrix, and
q is nonnegative. Let T0 be a shape regular and quasiuniform initial partition of Ω into a finite number of d-simplices,
and generate T1, T2, . . . by refining the initial partition using either red-green or red local refinement strategies in d = 2
or d = 3 spatial dimensions. Let Sj be the simplicial linear C0 finite element (FE) space corresponding to Tj equipped
with zero boundary values. The set of nodal basis functions for Sj is denoted by {φ(j)

i }Nj

i=1 where Nj = dim Sj is equal
to the number of interior nodes in Tj . Successively refined FE spaces will form the following nested sequence:

S0 ⊂ S1 ⊂ . . . ⊂ Sj ⊂ . . . ⊂ H1
0 (Ω).(1.2)

Although the mesh is nonconforming in the case of red refinement, Sj is used within the framework of conforming FE
methods for discretizing (1.1).

Let the bilinear form and the linear functional representing the weak formulation of (1.1) be denoted as

a(u, v) =
∫

Ω

p ∇u · ∇v + q u v dx, b(v) =
∫

Ω

f v dx, u, v ∈ H1
0 (Ω),

and let us consider the following Galerkin formulation: Find u ∈ Sj , such that

a(u, v) = b(v), ∀v ∈ Sj .(1.3)

Employing the expansion u =
∑n

i=1 u
(j)
i φ

(j)
i in the nodal basis for Sj , problem (1.3) reduces to an algebraic equation of

the form:

A(j)u(j) = b(j) ∈ RNj(1.4)

for the combination coefficients u(j) ∈ RNj . The nodal discretization matrix and vector arise then as:

A(j)
rs = a(φ(j)

s , φ(j)
r ), b(j)

r = b(φ(j)
r ), 1 ≤ r, s ≤ Nj .

Solving the discretized form of (1.3), namely (1.4), by iterative methods, has been the subject of intensive research
because of the enormous practical impact on a number of application areas in computational science. For quality
approximation in physical simulation, one is required to use meshes containing very large numbers of simplices leading
to approximation spaces Sj with very large dimension Nj . Only iterative methods which scale well with Nj can be used
effectively, which usually leads to the use of multilevel-type iterative methods and preconditioners. Even with the use of
such optimal methods for (1.4), which means methods which scale linearly with Nj in both memory and computational
complexity, the approximation quality requirements on Sj often force Nj to be so large that only parallel computing
techniques can be used to solve (1.4).

To overcome this difficulty one employs adaptive methods, which involves the use of a posteriori error estimation
to drive local mesh refinement algorithms. This approach leads to approximation spaces Sj which are adapted to the
particular target function u of interest, and as a result can achieve a desired approximation quality with much smaller
approximation space dimension Nj than non-adaptive methods. One still must solve the algebraic system (1.4), but
unfortunately most of the available multilevel methods and preconditioners are no longer optimal, in either memory or
computational complexity. This is due to the fact that in the local refinement setting, the approximation spaces Sj do
not increase in dimension geometrically as they do in the uniform refinement setting. As a result, a single multilevel
V-cycle no longer has linear complexity, and the same difficulty is encountered by other multilevel methods. Moreover,
storage of the discretization matrices and vectors for each approximation space, required for assembling V-cycle and
similar iterations, no longer has linear memory complexity.

A partial solution to the problem with multilevel methods in the local refinement setting is provided by the HB
method [4, 5, 21]. This method is based on a direct or hierarchical decomposition of the approximation spaces Sj rather
than the overlapping decomposition employed by the multigrid and BPX method, and therefore by construction has
linear memory complexity as well as linear computational complexity for a single V-cycle-like iteration. Unfortunately,
the HB condition number is not uniformly bounded, leading to worse than linear overall computational complexity. While
the condition number growth is slow (logarithmic) in two dimensions, it is quite rapid (geometric) in three dimensions,
making it ineffective in the 3D local refinement setting. Recent alternatives to the HB method, including both BPX-like
methods [7, 8] and wavelet-like stabilizations of the HB methods [19], provide a final solution to the condition number
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growth problem. It was shown in [9] that the BPX preconditioner has uniformly bounded condition number for certain
classes of locally refined meshes in two dimensions, and more recently in [2] it was shown that the condition number
remains uniformly bounded for certain classes of locally refined meshes in three spatial dimensions. In [3], it was also
shown that wavelet-stabilizations of the HB method give rise to uniformly bounded conditions numbers for certain classes
of local mesh refinement in both the two- and three-dimensional settings.

In view of [2] and [3], our interest in this paper is to examine the practical implementation aspects of both BPX
and stabilized HB iterative methods and preconditioners. The remainder of the paper is structured as follows. In §2,
we review the algorithms presented in [2] and [3], giving a unified algorithm framework on which implementations can
be based. The core of the paper is in some sense §3, which describes in detail the datastructures and key algorithms
employed in the implementation of the algorithms. The focus is on practical realization of optimal (linear) complexity of
the implementations, in both memory and operation complexity. The FEtk software package which is leveraged for our
implementations is described briefly in §3.3. A sequence of numerical experiments with the implementations is presented
in §4, illustrating the condition number growth properties of BPX and stabilized HB methods. Finally, we draw some
conclusions in §5.

2. Overview of the multilevel methods. In the first article [2] of the trilogy, it was shown that the BPX
preconditioner was optimal on the meshes under the local 2D and 3D red-green, as well as local 2D and 3D red,
refinement procedures. The classical BPX preconditioner [8, 20] can be written as an action of the operator X as follows:

Xu =
J∑

j=0

2j(d−2)

Nj∑
i=1

(u, φ
(j)
i )φ(j)

i , u ∈ SJ .(2.1)

Let the prolongation operator from level j − 1 to j be denoted by P j
j−1, and also denote the prolongation operator from

level j to J as:

Pj ≡ P J
j = P J

J−1 . . . P j+1
j ∈ RNJ×Nj ,

where P J
J is defined to be the identity matrix I ∈ RNJ×NJ . Then the matrix representation of (2.1) becomes [20]:

X =
J∑

j=0

2j(d−2)PjP
t
j .

One can also introduce a version with a smoother Sj (the smoother is a symmetric Gauss-Seidel iteration throughout
the paper):

X =
J∑

j=0

2j(d−2)PjSjP
t
j .

The preconditioner (2.1) can be modified in the hierarchical sense;

XHBu =
J∑

j=0

2j(d−2)

Nj∑
i=Nj−1+1

(u, φ
(j)
i )φ(j)

i , u ∈ SJ .(2.2)

The new preconditioner corresponds to the additive HB preconditioner in [21]. The matrix representation of (2.2) is
formed from matrices Hj which are simply the tails of the Pj corresponding to newly introduced degrees of freedom
(DOF) in the fine space. In other words, Hj ∈ RNJ×(Nj−Nj−1) is given by only keeping the fine columns (the last
Nj −Nj−1 columns of Pj). Hence, the matrix representation of (2.2) becomes:

XHB =
J∑

j=0

2j(d−2)HjH
t
j .

Only in the presence of a geometric increase in the number of DOF, the same assumption for optimality of a single
classical multigrid or BPX iteration, does the cost per iteration remain optimal. In the case of local refinement, the BPX
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preconditioner (2.1) (usually known as additive multigrid) can easily be suboptimal because of the suboptimal cost per
iteration (see Figure 4.3). On the other hand, the HB preconditioner (2.2) suffers from a suboptimal iteration count.
The above deficiencies of the preconditioners (2.1) and (2.2) can be overcome by restricting the sum over i in (2.1) only
to those nodal basis functions with supports that intersect the refinement region [6, 7, 9, 14]. We call this set onering
of fine DOF, namely, the set which contains fine DOF and their immediate neighboring coarse DOF. The following is
referred as the BPX preconditioner for local refinement.

Xu =
J∑

j=0

2j(d−2)
∑

i∈ONERING(j)

(u, φ
(j)
i )φ(j)

i , u ∈ SJ ,(2.3)

where ONERING(j) = {onering(ii) : ii = Nj−1 + 1, . . . , Nj}.
The BPX decomposition gives rise to basis functions which are not locally supported, but they decay rapidly outside

a local support region. This allows for locally supported approximations as illustrated in Figures 2.1, 2.2, and 2.3.

Fig. 2.1. Hierarchical basis function without modification.

Fig. 2.2. Wavelet modified hierarchical basis function with one iteration of symmetric Gauss-Seidel approximation, upper and lower view.

Fig. 2.3. Wavelet modified hierarchical basis function with one iteration of Jacobi approximation, upper and lower view.
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The wavelet modified hierarchical basis (WMHB) methods [17, 18, 19] can be viewed as an approximation of the
wavelet basis stemming from the BPX decomposition [13]. A similar wavelet-like multilevel decomposition approach was
taken in [16], where the orthogonal decomposition is formed by a discrete L2-equivalent inner product. This approach
utilizes the same BPX two-level decomposition [15, 16].

For adaptive regimes, the other primary method of interest is the WMHB method. The WMHB methods can be
described as additive or multiplicative Schwarz methods. In one of the previous papers [3] of this trilogy, it was shown
that the additive version of the WMHB method is optimal under certain types of red-green mesh refinement. Following
the notational framework in [3, 19], this method is defined recursively as follows:

Definition 2.1. The additive WMHB method D(j) is defined for j = 1, . . . , J as

D(j) ≡

[
D(j−1) 0
0 B

(j)
22

]
,

with D(0) = A(0).
With smooth PDE coefficients, optimal results were also established for the multiplicative version of the WMHB

method in [3]. Our numerical experiments demonstrate such optimal results. This method can be written recursively as:
Definition 2.2. The multiplicative WMHB method B(j) is defined as

B(j) ≡

[
B(j−1) A

(j)
12

0 B
(j)
22

] [
I 0

B
(j)−1

22 A
(j)
21 I

]
=

[
B(j−1) + A

(j)
12 B

(j)−1

22 A
(j)
21 A

(j)
12

A
(j)
21 B

(j)
22

]
,

with B(0) = A(0).
A

(j)
12 , A

(j)
21 , A

(j)
22 represent subblocks of A(j) and they correspond to coarse-fine, fine-coarse, and fine-fine interactions

of DOF at level j, respectively. B
(j)
22 denotes an approximation of A

(j)
22 , e.g. Gauss-Seidel or Jacobi approximation. For

a more complete description of these and related algorithms, see [2, 3].

3. Implementation. The overall utility of any finite element code depends strongly on efficient implementation
of its core algorithms and data structures. Theoretical results involving complexity are of little practical importance if
the methods cannot be implemented. For algorithms involving data structures, this usually means striking a balance
between storage costs and computational complexity. Finding a minimal representation for a data set is only useful if
the information can be accessed efficiently.

3.1. Sparse Matrix Structures. Our implementation relies on a total of four distinct sparse matrix data struc-
tures: compressed column (COL), compressed row (ROW), diagonal-row-column (DRC), and orthogonal-linked list
(XLN). Each of these storage schemes attempts to record the location and value of the nonzeros using a minimal amount
of information. The schemes differ in the exact representation which effects the speed and manner with which the data
can be retrieved. To illustrate how each of these data structures works in practice, we consider storing the following
sparse matrix: 

1 2
3 4 5 6

7 8
9 10

11 12 13

(3.1)

• COL: The compressed column format is the most commonly used sparse matrix type in the literature. It is the
format chosen for the Harwell-Boeing matrix collection [11], and is used in production codes such as SuperLU [10]. In
this data structure, the nonzeros are arranged by column in a single double-precision array:

ACOL = [1, 3, 2, 4, 7, 11, 5, 8, 9, 12, 6, 10, 13] .

The indices of A (often referred to as pointers) corresponding to the first entry in each column is then stored in an integer
array:

IACOL = [1, 3, 7, 9, 11, 14] .
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The length of the array IA is always one greater than the number of columns, with the last entry is equal to the number
of nonzeros plus one. The difference in successive entries in the IA array reflects the number of nonzeros in each column.
If a column has no nonzeros, the index from the next column is repeated. To determine the location of each nonzero
within its column, the row index of each entry is stored in an integer array:

JACOL = [1, 2, 1, 2, 3, 5, 2, 3, 4, 5, 2, 4, 5] .

There is no restriction that the entries are ordered within each column, only that the columns are ordered. The memory
required to store this datastructure is: (nZ + nC + 1) ∗ size (int) + nZ ∗ size (double), where nZ and nC are the number
of nonzeros and columns respectively.

• ROW: The compressed row data structure is just the transpose of the compressed column data structure, where
the nonzero entries, row pointers, and column indices are stored in A, IA, and JA respectively:

AROW = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] ,

IAROW = [1, 3, 7, 9, 11, 14] , JAROW = [1, 2, 1, 2, 3, 5, 2, 3, 4, 5, 2, 4, 5] .

One should note that since in our example the matrix is structurally symmetric, the IA and JA arrays are identical in both
the ROW and COL cases. The memory required to store this datastructure is: (nZ+nR+1)∗size (int)+nZ∗size (double),
where nR is the number of rows.

• DRC: The diagonal-row-column format is a structurally symmetric data structure, which is only valid for square
matrices. In this format, the diagonal is stored in its own full vector, while the strictly upper and lower triangular
portions are stored in ROW and COL formats respectively. Leveraging the symmetry in the nonzero structure, the same
IA and JA arrays can be used for the upper and lower triangular parts:

ADDRC = [1, 4, 8, 9, 13] ,

AUDRC = [2, 5, 6, 10] , ALDRC = [3, 7, 11, 12]

IADRC = [1, 2, 4, 4, 5, 5] , JADRC = [2, 3, 5, 5] .

The memory required to store this datastructure is less than ROW or COL if the diagonal is full, and the matrix is
structurally symmetric.

11

1 2 22 2

2

2

3

4 4 4

4 5 5

5

5

5

5

3

1

1 2

3 4 5

8

9 10

11 12 13

3 2

6

3 3

7

IP

JP

Fig. 3.1. An illustration of the XLN datastructure.

• XLN: The orthogonal-linked list format is the only dynamically “fillable” datastructure used by our methods. By
using variable length linked lists, rather than a fixed length array, it is suitable for situations where the total number of
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nonzeros is not known a priori. The XLN datastructure is illustrated graphically in Figure 3.1. For each nonzero, there
is a link containing the value, row index, column index, and pointers to the next in the row and column. To keep track of
the first link in each row and column, there are two additional pointer arrays, IP and JP. As long as there are “order-one”
nonzeros per row, accessing any entry can be accomplished in “order-one” time. The structure can be traversed both
rowwise, and columnwise depending on the situation. If the matrix is symmetric, only the lower triangular portion is
stored. The total storage overhead for this structure is: nZ ∗(size (double) + 2 ∗ size (int))+(nC + nR + 2 nZ)∗size (ptr).
Although this is considerably more than the other three datastructures, one should note that the asymptotic complexity
is still linear in the number of nonzeros.

3.2. Sparse Matrix Products. The key preprocessing step in the hierarchical basis methods, is converting the
“nodal” matrices and vectors into the hierarchical basis. This operation involves sparse matrix-vector and matrix-matrix
products for each level of refinement. To ensure that this entire operation has linear cost, with respect to the number
of unknowns, the per-level change of basis operations must have a cost of O (nj), where nj := Nj −Nj−1 is the number
of “new” nodes on level j. For the traditional multigrid algorithm this is not possible, since enforcing the variational
conditions operates on all the nodes on each level, not just the newly introduced nodes.

The linear operator which converts from the nodal to the hierarchical basis can be written in terms of a change of
basis matrix:

G =

[
I K12

K21 I + K22

]
,

where G ∈ RNj×Nj , K12 ∈ RNj−1×nj , K21 ∈ Rnj×Nj−1 , and K22 ∈ Rnj×nj . In this representation, we have assumed
that the nodes are ordered with the nodes Nj−1 inherited from the previous level listed first, and the nj new DOF listed
second. For both wavelet modified (WMHB) and unmodified hierarchical basis (HB), the K21 block represents the last
nj rows of the prolongation matrix, P j

j−1. In the HB case, the K12 and K22 blocks are zero resulting in a very simple
form:

Ghb =

[
I 0

K21 I

]
(3.2)

For WMHB, the K12 and K22 blocks are computed using the mass matrix, which results in the following formula:

Gwmhb =

[
I −inv

[
Mhb

11

]
Mhb

12

K21 I −K21inv
[
Mhb

11

]
Mhb

12

]
,(3.3)

where the inv [·] is some approximation to the inverse which preserves the complexity. For example, it could be as simple
as the inverse of the diagonal, or a low-order matrix polynomial approximation. The Mhb blocks are taken from the
mass matrix in the HB basis:

Mhb = GT
hbMnodalGhb.(3.4)

For the remainder of this section, we restrict our attention to the WMHB case. The HB case follows trivially with the
two additional subblocks of K set to zero.

To reformulate the nodal matrix representation of the bilinear form in terms of the hierarchical basis, we must
perform a triple matrix product of the form:

Awmhb
(j) = GT

(j)A
nodal
(j) G(j)

=
(
I + KT

(j)

)
Anodal

(j)

(
I + K(j)

)
.

In order to keep linear complexity, we can only copy Anodal a fixed number of times, i.e. it cannot be copied on every
level. Fixed size data-structures are unsuitable for storing the product, since predicting the nonzero structure of Awmhb

(j)

is just as difficult as actually computing it. It is for these reasons that we have chosen the following strategy: First, copy
Anodal on the finest level, storing the result in an XLN which will eventually become Awmhb. Second, form the product
pairwise, contributing the result to the XLN. Third, the last nj columns and rows of Awmhb are stripped off, stored in
fixed size blocks, and the operation is repeated on the next level, using the A11 block as the new Anodal:

Algorithm 3.1. (Wavelet Modified Hierarchical Change of Basis)
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• Copy Anodal
J → Awmhb in XLN format.

• While j > 0

1. Multiply Awmhb = AwmhbG as [
A11 A12

A21 A22

]
+ =

[
A11 A12

A21 A22

] [
0 K12

K21 K22

]
2. Multiply Awmhb = GT Awmhb as [

A11 A12

A21 A22

]
+ =

[
0 KT

21

KT
12 KT

22

] [
A11 A12

A21 A22

]

3. Remove A
(j)
21 , A

(j)
12 , A

(j)
22 blocks of Awmhb storing in ROW, COL, and DRC formats respectively.

4. After the removal, all that remains of Awmhb is its A
(j)
11 block.

5. Let j = j - 1, descending to level j − 1.

• End While.

• Store the last Awmhb as Acoarse

We should note that in order to preserve the complexity of the overall algorithm, all of the matrix-matrix algorithms
must be carefully implemented. For example, the change of basis involves computing the products of A11 with K12 and
KT

12. To preserve storage complexity, K12 must be kept in compressed column format, COL. For the actual product, the
loop over the columns of K12 must be ordered first, then a loop over the nonzeros in each column, then a loop over the
corresponding row or column in A11. It is exactly for this reason, that one must be able to traverse A11 both by row and
by column, which is why we have chosen an orthogonal-linked matrix structure for A during the change of basis (and
hence A11).

To derive optimal complexity algorithms for the other products, it is enough to ensure that the outer loop is always
over a dimension of size nj . Due to the limited ways in which a sparse matrix can be traversed, the ordering of the
remaining loops will usually be completely determined. Further gains can be obtained in the symmetric case, since only
the upper or lower portion of the matrix needs to be explicitly computed and stored.

3.3. The Finite Element ToolKit (FEtk). A number of variations of the methods described above have been
implemented using the Finite Element ToolKit (FEtk) [12]. FEtk is an open source finite element modeling package
which has been developed by the Holst research group over several years at Caltech and UC San Diego, with generous
contributions from a number of colleagues. FEtk consists of a low-level portability library called MALOC (Minimal
Abstraction Layer for Object-oriented C), on top of which is built a general finite element modeling kernel called MC
(Manifold Code). Most of the images appearing later in this paper were produced using another component of FEtk call
SG (Socket Graphics), which is also built on top of MALOC. FEtk also includes a fully functional MATLAB version
of MC called MCLite, which shares with MC its datastructures, a posteriori error estimation and mesh refinement
algorithms, and iterative solution methods. All of the preconditioners employed in this paper have been implemented
by the authors as ANSI-C class library extensions to MC, and as MATLAB toolkit-like extensions to MCLite. The
two implementations are mathematically equivalent, although the MCLite implementation is restricted to two spatial
dimensions. (The MC-based implementation is both two- and three-dimensional.) The extensions to MC are distributed
as the MCX library, and as MATLAB extensions to MCLite are distributed as MCLiteX.

MALOC, SG, MC, and MCLite are freely redistributable under the GNU General Public License (GPL). More
information about FEtk can be found at:

http://www.fetk.org

4. Numerical Experiments. The test problem is as follows:

−∇ · (p ∇u) + q u = f, x ∈ Ω ⊂ R2,

n · (p ∇u) = g, on ΓN ,

u = 0, on ΓD,

where Ω = [0, 1]× [0, 1] and

p =

[
1 0
0 1

]
, and q = 1.
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Fig. 4.1. Adaptive mesh, experiment set I.

The source term f is constructed so that the true solution is u = sinπx sinπy. We present two experiment sets in which
adaptivity is driven by a geometric criterion. Namely, the simplices which intersect with the quarter circle centered at the
origin with radius 0.25 and 0.05, in experiment sets I and II respectively, are repeatedly marked for further refinement.
• Boundary conditions for the domain in experiment set I:

ΓN = {(x, y) : x = 0, 0 < y < 1} ∪ {(x, y) : x = 1, 0 < y < 1}
ΓD = {(x, y) : 0 ≤ x ≤ 1, y = 0} ∪ {(x, y) : 0 ≤ x ≤ 1, y = 1}.

• Boundary conditions for the domain in experiment set II:

ΓN = {(x, y) : 0 ≤ x ≤ 1, y = 0} ∪ {(x, y) : 0 ≤ x ≤ 1, y = 1}
∪{(x, y) : x = 0, 0 ≤ y ≤ 1} ∪ {(x, y) : x = 1, 0 ≤ y ≤ 1}.

Stopping criterion: ‖error‖A < 10−7.

In experiment set I, red-green refinement subdivides simplices intersecting an arc of radius 0.25 which gives rise to
a rapid increase in the number of degrees of freedom (DOF). Although we have an adaptive refinement strategy, this
indeed creates a geometric increase in the number of DOF, see Figure 4.1. Experiment set II is designed so that a small
number of DOF is introduced at each level. In order to do this, green refinement subdivides simplices intersecting a
smaller arc with radius 0.05.

In all the experiments, we utilize a direct coarsest level solve and the smoother is a symmetric Gauss-Seidel iteration.
Set of DOF on which the smoother acts is the fundamental difference between the methods. Classical multigrid methods
smooth on all DOF, whereas HB-like methods smooth only on fine DOF. WMHB style methods smooth as HB methods
do, but in a different basis. BPX methods smooth on the onering of the fine DOF, which is more than HB methods but
less than classical multigrid.

There are four multiplicative methods under consideration: MG, M.BPX, HBMG, and WMHBMG. The following
is a guide to the tables and figures below. MG will refer to classical multigrid, in particular corresponds to the standard
V-cycle implementation. HBMG corresponds exactly to the MG algorithm, but where pre- and post-smoothing are
restricted to fine DOF. M.BPX refers to multiplicative version of BPX with the smoother is restricted to fine DOF and
their immediate coarse neighbors which are often called as the onering neighbors. The onering neighbors of the fine nodes
can be directly determined by the sparsity pattern of the fine-fine subblock A22 of the stiffness matrix. The set of DOF
over which the BPX method smooths is simply the union of the column locations of nonzero entries corresponding to
fine DOF. Using this observation, HBMG smoother can easily be modified to be a BPX smoother. WMHBMG is similar
to HBMG, in that both are multiplicative methods in the sense of Definition 2.2, but the difference is in the basis used.
In particular, the change of basis matrices are different as a result of the wavelet stabilization, where the L2-projection
to coarser finite element spaces is approximated by two Jacobi iterations.
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Table 4.1

MCLite iteration counts for various methods, red-green refinement driven by geometric refinement, experiment set I.

Levels 1 2 3 4 5 6 7 8

MG 1 4 7 7 7 6 6 6
M.BPX 1 4 7 7 7 7 6 6
HBMG 1 10 19 28 32 37 45 56
WMHBMG 1 6 12 13 16 17 17 17

PCG-MG 1 3 4 5 5 5 5 5
PCG-M.BPX 1 3 5 5 5 5 5 5
PCG-HBMG 1 3 7 10 12 14 15 16
PCG-WMHBMG 1 3 7 7 9 9 9 9

PCG-A.MG 1 8 13 17 20 21 23 24
PCG-BPX 1 6 12 14 17 17 18 18
PCG-HB 1 5 14 21 26 32 38 41
PCG-WMHB 1 5 12 15 19 20 21 21

Nodes 16 19 31 55 117 219 429 835
DOF 8 10 21 43 102 202 410 814
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Fig. 4.2. Flop counts for single iteration of multiplicative (left) and additive (right) methods, experiment set I.

PCG stands for the preconditioned conjugate gradient method. PCG-A.MG, PCG-BPX, PCG-HB, and PCG-
WMHB involve the use of additive MG, PBX, HB, and WMHB as preconditioners for CG, respectively. In the sense
of Definition 2.1, HB and WMHB are additive versions of HBMG and WMHBMG respectively. Each preconditioner is
implemented in a manner similar to that described in [17, 19].

Finally, note that Nodes denotes the total number of nodes in the simplicial mesh, including Dirichlet and Neumann
nodes. The iterative methods view DOF as the union of the unknowns corresponding to interior and Neumann/Robin
boundary DOF, and these are denoted as such.

The refinement procedure utilized in the experiments is fundamentally the same as the 2D red-green described
in [2, 3]. We, however, remove the restrictive conditions that the simplices for level j + 1 have to be created from the
simplices at level j and the bisected (green refined) simplices cannot be further refined. Even in this case the claimed
results seem to hold. Experiments are done in the MCLite module of the FEtk package. Several key routines from this
implementation, used to produce most of the numerical results in this paper, are given in the appendix.

Iteration counts are reported in Tables 4.1 and 4.2. The optimality of M.BPX, BPX, WMHBMG and WMHB is
evidenced in each of the experiments. We observed a constant number of iterations independent of the number of DOF
in each case. HB and HBMG methods suffer from a logarithmic increase in the number of iterations. Among all the
methods tested, the M.BPX is the closest to MG in terms of low iteration counts.

However, it should be clearly noted that in the experiments we present below, the cost per iteration of the various
methods can differ substantially. We report flop counts of a single iteration of the above methods, see Figures 4.2 and 4.3.
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Table 4.2

MCLite iteration counts for various methods, green refinement driven by geometric refinement, experiment set II.

Levels 1 2 3 4 5 6 7
8 9 10 11 12 13 14

MG 1 3 4 3 4 4 3
4 4 4 4 4 4 4

M.BPX 1 4 4 4 4 4 4
4 5 5 5 5 5 5

HBMG 1 13 14 16 22 25 26
30 32 32 36 38 42 44

WMHBMG 1 8 11 11 12 12 12
13 15 15 15 15 15 15

PCG-MG 1 2 3 3 3 4 3
3 4 3 4 3 3 3

PCG-M.BPX 1 2 3 4 4 3 4
4 4 4 4 4 4 4

PCG-HBMG 1 2 5 7 8 9 10
10 11 12 11 12 13 13

PCG-WMHBMG 1 2 5 6 6 7 7
8 8 8 8 8 8 8

PCG-A.MG 1 10 13 15 18 20 21
23 25 26 28 28 28 29

PCG-BPX 1 6 10 11 13 14 15
16 18 19 19 20 20 21

PCG-HB 1 3 9 11 14 18 20
22 24 27 30 32 34 36

PCG-WMHB 1 3 9 12 14 16 17
19 20 20 22 23 23 23

Nodes=DOF 289 290 296 299 309 319 331
349 388 423 489 567 679 837

In experiment set I, the cost per iteration is linear for all the methods. The WMHB and WMHBMG methods are the
most expensive ones. We would like to emphasize that the refinement in experiment set I cannot be a good example for
adaptive refinement given the geometric increase in the number of DOF. MG exploits this geometric increase and enjoys
a linear computational complexity. Experiment set II is more realistic in the sense that the refinement is highly adaptive
and introduces a small number of DOF at each level. One can now observe a suboptimal (logarithmic) computational
complexity for MG-like methods in such realistic scenarios. In accordance with the theoretical justification, under highly
adaptive refinement MG methods will asymptotically be suboptimal. Moreover, storage complexity severely prevents
MG-like methods from being a viable tool for large and highly adaptive settings.

Coarser representations of the finest level system (1.4) are algebraically formed by enforcing variational conditions.
Some methods require further stabilizations in the from of matrix-matrix products. These form the so-called prepro-
cessing step in multilevel methods. The computational cost of variational conditions is the same regardless of having
a multiplicative or an additive version of the same method. This computational cost is orders of magnitude cheaper
than the cost of a single iteration. However, this is the step where the storage complexity can dominate the overall
complexity. Due to memory bandwidth problems on conventional machines, one should be very careful with the choice
of datastructures. Since only the A11 = Acoarse subblock of A is formed for the next coarser level, the cost of variational
conditions for MG, M.BPX, A.MG, and BPX is the cheapest among all the methods. On the other hand, HBMG and
HB require stabilizations of A12 and A21 using the hierarchical basis. The WMHBMG and WMHB methods are more
demanding by requiring stabilizations of A12, A21, and A22 using the wavelet modified hierarchical basis. Wavelet struc-
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Fig. 4.3. Flop counts for single iteration of multiplicative (left) and additive (right) methods, experiment set II.
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Fig. 4.4. Flop counts for variational conditions for experiment set I (left) and experiment set II (right).

ture creates denser change of basis matrix than that of the hierarchical basis. Therefore, preprocessing in the WMHB
and WMHBMG methods is the most expensive among all the methods.

5. Conclusion. In this paper, we examined a number of additive and multiplicative multilevel iterative methods and
preconditioners in the setting of two-dimensional local mesh refinements. While standard multilevel methods are effective
for uniform refinement-based discretizations of elliptic equations, they tend to be less effective for algebraic systems which
arise from discretizations on locally refined meshes, losing their optimal behavior in both storage and computational
complexity. Our primary focus here was on BPX-style additive and multiplicative multilevel preconditioners, and on
various stabilizations of the additive and multiplicative hierarchical basis method, and their use in the local mesh
refinement setting. In the first two papers of this trilogy, it was shown that both BPX and wavelet stabilizations of
HB have uniformly bounded condition numbers on several classes of locally refined 2D and 3D meshes based on fairly
standard (and easily implementable) red and red-green mesh refinement algorithms. In this third article of the trilogy, we
described in detail the implementation of these types of algorithms, including detailed discussions of the datastructures
and traversal algorithms we employ for obtaining optimal storage and computational complexity in our implementations.
We showed how each of the algorithms can be implemented using standard datatypes available in languages such as
C and FORTRAN, so that the resulting algorithms have optimal (linear) storage requirements, thereby the resulting
multilevel method or preconditioner can be applied with optimal (linear) computational costs.

We presented a sequence of numerical experiments illustrating the effectiveness of the BPX and stabilized HB methods
in adaptive regimes. As expected, multigrid methods are most effective in terms of iteration counts (remaining a small
constant as the DOF increase), but the suboptimal complexity per iteration in the local refinement setting makes the
BPX methods the most attractive. Furthermore, storage complexity prohibits MG methods from being a viable tool
for large and highly adaptive settings. In addition, both the additive and multiplicative WMHB-based methods and
preconditioners demonstrated similar constant iteration requirements with increasing DOF, yet the cost per iteration
remains optimal (linear) even in the local refinement setting. Consequently in highly adaptive regimes, the BPX methods
prove to be the most effective, and the WMHB methods become the second most effective. The superiority of the BPX
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and WMHB methods would be more striking in large three-dimensional problems.

Acknowledgments. The authors thank R. Bank for many enlightening discussions.

6. Appendix: Highlights from The MCLite Implementation.
function [u]=multiplicative(b,lev,hb);

%%% Multiplicative methods: MG, M.BPX, HBMG, WMHBMG

%%% prolongation, stiffness, change of basis, one-ring

global P_12 P_23 P_34 P_45 A_1 A_2 A_3 A_4 A_5;

global level S_2 S_3 S_4 S_5 ONER_2 ONER_3 ONER_4 ONER_5;

global A_hb smthKey exactC bpx;

%%% get the stiffness matrix on this level

A = eval([’A_’ num2str(lev)]);

if (lev == 1)

if (exactC) u = A \ b; else u = b; end;

else

ONER = eval([’ONER_’ num2str(lev)]);

%%% recover the dimensions

P = eval([’P_’ num2str(lev-1) num2str(lev)]);

[r c] = size(P);

%%% shorthand for the top and tail of vectors/matrices

top_ = 1:c;

tail_ = (c+1):r;

if (hb)

u = zeros(r,1);

f = b;

%%% Get the change of basis matrix for this level

S = eval([’S_’ num2str(lev)]);

%%% Transform f into the HB basis

f = f + S’*f;

%%% pre-smoothing by symmetric Gauss-Seidel

u = smooth_point(A_hb,u,f,smthKey,2,lev);

%%% correct f using smoother result

f(top_,1) = f(top_,1) - A_hb(top_,tail_)*u(tail_,1);

else %%% mg/bpx

u = zeros(c,1);

d = zeros(r,1);

if (bpx)

d = smooth_point(A,d,b,smthKey,3,lev);

else %%% mg

d = smooth_point(A,d,b,smthKey,1,lev);

end;

%%% coarse grid defect restriction: f = P’*(b - A*d);

if (bpx)

f = b - A(:,ONER)*d(ONER);

else %%% mg

f = b - A*d;

end

f(top_,1) = f(top_,1) + P(tail_,:)’*f(tail_,1);

end;

%%% Recursion

u(top_,1) = multiplicative(f(top_,1),lev-1,hb);
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if (hb)

%%% correct f using the coarse solve result

f(tail_,1) = f(tail_,1) - A_hb(tail_,top_)*u(top_,1);

%%% post-smoothing by symmetric Gauss-Seidel

u = smooth_point(A_hb,u,f,smthKey,2,lev);

%%% transform u back into the nodal basis

u = u + S*u;

else %%% mg/bpx

%%% interpolate result: u = P*u;

u(tail_,1) = P(tail_,:)*u(top_,1);

if (bpx)

u(ONER) = u(ONER) + d(ONER);

u = smooth_point(A,u,b,smthKey,3,lev);

else %%% mg

u = u + d;

u = smooth_point(A,u,b,smthKey,1,lev);

end

end;

function [u]=additive(f,lev,hb);

%%% Additive methods: A.MG, BPX, HB, WMHB

%%% prolongation, stiffness, change of basis, one-ring

global P_12 P_23 P_34 P_45 A_1 A_2 A_3 A_4 A_5;

global S_2 S_3 S_4 S_5 ONER_2 ONER_3 ONER_4 ONER_5;

global A_hb smthKey exactC bpx;

%%% get the stiffness matrix on this level

A = eval([’A_’ num2str(lev) ]);

if (lev == 1)

if (exactC) u = A \ f; else u = f; end

else

ONER = eval([’ONER_’ num2str(lev)]);

%%% recover the dimensions

P = eval([’P_’ num2str(lev-1) num2str(lev)]);

[r c] = size(P);

%%% shorthand for the top and tail of vectors/matrices

top_ = 1:c;

tail_ = (c+1):r;

if (hb)

u = zeros(r,1);

%%% Get the change of basis matrix for this level

S = eval([’S_’ num2str(lev)]);

%%% Transform f into the HB basis

f = f + S’*f;

%%% fine smoothing by symmetric Gauss-Seidel

u = smooth_point(A_hb,u,f,smthKey,2,lev);

else %%% additive MG

u = zeros(c,1);

d = zeros(r,1);

%%% smoothing by symmetric Gauss-Seidel

if (bpx)

d = smooth_point(A,d,f,smthKey,3,lev);
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else %%% mg

d = smooth_point(A,d,f,smthKey,1,lev);

end;

%%% coarse grid restriction: f = P’*f;

f(top_,1) = f(top_,1) + P(tail_,:)’*f(tail_,1);

end;

%%% Recursion

u(top_,1) = additive(f(top_,1),lev-1,hb);

if (hb)

%%% Transform u into the HB basis

u = u + S*u;

else

%%% interpolate result: u = P*u;

u(tail_,1) = P(tail_,:)*u(top_,1);

if (bpx)

u(ONER) = u(ONER) + d(ONER);

else %%% mg

u = u + d;

end;

end;

end;
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Fig. 6.1. Dialog box from MCLite for experiment set I.



16 B. AKSOYLU, S. BOND, AND M. HOLST

REFERENCES

[1] B. Aksoylu, Adaptive Multilevel Numerical Methods with Applications in Diffusive Biomolecular Reactions, PhD thesis, Department

of Mathematics, University of California, San Diego, La Jolla, CA, 2001.

[2] B. Aksoylu and M. Holst, An odyssey into local refinement and multilevel preconditioning I: Optimality of the BPX preconditioner,

SIAM J. Numer. Anal., (2002). in review.

[3] , An odyssey into local refinement and multilevel preconditioning II: Stabilizing hierarchical basis methods, SIAM J. Numer. Anal.,

(2002). in review.

[4] R. E. Bank and T. Dupont, Analysis of a two-level scheme for solving finite element equations, tech. rep., Center for Numerical

Analysis, University of Texas at Austin, 1980. CNA–159.

[5] R. E. Bank, T. Dupont, and H. Yserentant, The hierarchical basis multigrid method, Numer. Math., 52 (1988), pp. 427–458.

[6] F. Bornemann and H. Yserentant, A basic norm equivalence for the theory of multilevel methods, Numer. Math., 64 (1993), pp. 455–

476.

[7] J. H. Bramble and J. E. Pasciak, New estimates for multilevel algorithms including the V-cycle, Math. Comp., 60 (1993), pp. 447–471.

[8] J. H. Bramble, J. E. Pasciak, and J. Xu, Parallel multilevel preconditioners, Math. Comp., 55 (1990), pp. 1–22.

[9] W. Dahmen and A. Kunoth, Multilevel preconditioning, Numer. Math., 63 (1992), pp. 315–344.

[10] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, A supernodal approach to sparse partial pivoting, SIAM

J. Matrix Anal. Appl., 20 (1999), pp. 720–755.

[11] I. S. Duff, R. G. Grimes, and J. G. Lewis, Sparse matrix test problems, ACM Trans. Math. Softw., 15 (1989), pp. 1–14.

[12] M. Holst, Adaptive numerical treatment of elliptic systems on manifolds, Advances in Computational Mathematics, 15 (2001), pp. 139–

191.

[13] S. Jaffard, Wavelet methods for fast resolution of elliptic problems, SIAM J. Numer. Anal., 29 (1992), pp. 965–986.

[14] P. Oswald, Multilevel Finite Element Approximation Theory and Applications, Teubner Skripten zur Numerik, B. G. Teubner, Stuttgart,

1994.

[15] R. Stevenson, Robustness of the additive multiplicative frequency decomposition multi-level method, Computing, 54 (1995), pp. 331–346.

[16] , A robust hierarchical basis preconditioner on general meshes, Numer. Math., 78 (1997), pp. 269–303.

[17] P. S. Vassilevski and J. Wang, Stabilizing the hierarchical basis by approximate wavelets, I: Theory, Numer. Linear Alg. Appl., 4

Number 2 (1997), pp. 103–126.

[18] , Wavelet-like methods in the design of efficient multilevel preconditioners for elliptic PDEs, in Multiscale Wavelet Methods For

Partial Differential Equations, W. Dahmen, A. Kurdila, and P. Oswald, eds., Academic Press, 1997, ch. 1, pp. 59–105.

[19] , Stabilizing the hierarchical basis by approximate wavelets, II: Implementation and numerical experiments, SIAM J. Sci. Comput.,

20 Number 2 (1998), pp. 490–514.

[20] J. Xu and J. Qin, Some remarks on a multigrid preconditioner, SIAM J. Sci. Comput., 15 (1994), pp. 172–184.

[21] H. Yserentant, On the multilevel splitting of finite element spaces, Numer. Math., 49 (1986), pp. 379–412.


